Internet Develppment
互联网开发& 推广服务提供商

我们擅长商业策略与用户体验的完美结合。

欢迎浏览我们的案例。

首页 > 新闻中心 > 新闻动态 > 正文

时空不是连续的?这些科学家在实验室里模拟量子时空

发布时间:2019-10-30 11:09:53来源:环球科学

  我们所处的空间与时间,或许不是连续的?一个名为“圈量子引力”的量子理论,就提出了离散时空的概念。现在,一项由多位华人科学家主导的研究,让该理论进入全新的阶段——在实验室中模拟圈量子引力中的时空量子态。

  20世纪上半叶,量子理论的出现让物理学进入全新的阶段。这时,离散化成为物理学的新潮流。比如,玻尔通过对应原理计算出氢原子的电子能量是离散的,从而得出氢的光谱线;银原子与不均匀磁场相互作用后,自旋角动量的方向也是离散的,这给出了斯特恩-盖拉赫实验中两股银原子飞行轨迹。

  根据这个思路,一个很容易想到的问题是:既然能量与角动量都是量子化,也就是离散化的,那么时间与空间是不是离散的呢?

  圈量子引力的诞生

  一个诞生于1987年的全新理论,就提出了时空是离散的观点。这种物理学思想,就是圈量子引力(loop quantum gravity)理论。

  在圈量子引力出现之前,最流行的量子引力理论是惠勒-德威特方程。这个方程类似于量子力学的薛定谔方程:在惠勒-德威特方程中,整个宇宙空间可以看成波函数,这个波函数的演化满足薛定谔方程。但是,惠勒-德威特方程存在很多问题,因此后来被淘汰了。

  20世纪80年代中期,卡洛·罗韦利(Carlo Rovelli)和阿比耶·阿什特卡尔(Abhay Ashtekar)、李·斯莫林(Lee Smolin)开始重新考虑这个问题。他们在惠勒-德威特方程的基础上,创建了圈量子引力理论。

  罗韦利在接受《环球科学》采访时,介绍了圈量子引力的诞生经历:“1987年夏天,我还是一个对量子引力问题感兴趣的年轻博士后,到处拜访这个领域的科学家。当我去耶鲁大学拜访斯莫林时,他告诉我,他发现了惠勒-德威特方程的一些奇怪的解——在那里,空间中每个圈都有一个可能的解。于是,我开始和斯莫林合作。我们意识到,他的解可以成为量子引力的新基础。”随后,罗韦利和斯莫林去了美国锡拉丘兹大学,和当时在该校任职的阿什特卡尔合作,三人共同发展了圈量子引力理论。

  这个理论涉及到一个积分,这个积分是沿着时空中的一些小圈而进行的,所以这个理论叫做“圈”量子引力,它没有像惠勒-德威特方程那样采用薛定谔方程,而是采取了海森堡方程的模式(需要找到一对正则变量来进行量子化)。该理论认为,时间和空间由离散的块组成。物理学家定义了圈量子引力中基本单元的体积算符与面积算符,这些算符都有离散的本征值。这些最小的面积、体积不是连续变化的,因此该理论实现了时空的量子化。


圈量子引力概念图

  量子自旋网络

  前面说到,在圈量子引力中,空间是离散的。因此,三维空间可以被分成无数个基本的量子四面体。那么,物理学家如何刻画这些量子四面体呢?这与1971年物理学家罗杰·彭罗斯提出的量子自旋网络有关。

  量子自旋网络的构造用到了对偶的思想。如果存在一个多面体的空间量子,在量子自旋网络中,可以用多面体的中心点表示这个多面体的体积,而用穿过各个表面的线条来表示其面积。

  以下图为例,a图是一个正方体,假设这个正方体的边长是2普朗克长度,那么每个面的面积是4个普朗克面积,这个正方体的体积是8个普朗克体积。因此,如果用量子自旋网络来表示,那么就是b图。图上的这些数字,均与各个面对应的自旋有关。

  在圈量子力学的模型中,最基本的空间量子是一些量子四面体。这些量子四面体对应的量子自旋网络如下图所示。当然,这种量子四面体是在普朗克尺度下才出现的。对于量子四面体来说,其四个面的面积可以存在量子波动。
  (邯郸网站建设

最新资讯
© 2018 河北码上网络科技有限公司 版权所有 冀ICP备18021892号-1   
© 2018 河北码上科技有限公司 版权所有.